فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    12
  • شماره: 

    Special Issue
  • صفحات: 

    1585-1594
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    37
  • دانلود: 

    0
چکیده: 

Cardiovascular diseases are the world's principal reason for death, accounting it about 17.9 million people per year, as reported by World Health Organization(WHO). Arrhythmia is often a heart disease that is interpreted by a variation in the linearity of the heartbeat. The goal of this study would be to develop a new deep learning technique to accurately interpret arrhythmia utilizing a one-second segment. This paper introduces a novel method for automatic GAN-based arrhythmia classification. The input ECG signal is derived from the fusion of well known Physionet dataset from MIT-BIH and some Hospital ECG databases. The ECG segment over time is used to detect 15 different classes of arrhythmias. The GAN network uses an attention-based generator to learn local essential features and to maintain data integrity for both time and frequency domains. Among these, the highest accuracy obtained is 98\%. It can be inferred from the results that the proposed approach is smart enough to make meaningful predictions and produces excellent performance on the related metrics.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 37

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    11
  • شماره: 

    4
  • صفحات: 

    535-550
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    125
  • دانلود: 

    0
چکیده: 

Background: Cardiac arrhythmias are considered as one of the most serious health conditions; therefore, accurate and quick diagnosis of these conditions is highly paramount for the electrocardiogram (ECG) signals. Moreover, are rather difficult for the cardiologists to diagnose with unaided eyes due to a close similarity of these signals in the time domain. Objective: In this paper, an image-based and machine learning method were presented in order to investigate the differences between the three cardiac arrhythmias of VF, VT, SVT and the normal signal. Material and Methods: In this simulation study, the ECG data used are collected from 3 databases, including Boston Beth University Arrhythmias Center, Creighton University, and MIT-BIH. The proposed algorithm was implemented using MATLAB R2015a software and its simulation. At first, the signal is transmitted to the state space using an optimal time delay. Then, the optimal delay values are obtained using the particle swarm optimization algorithm and normalized mutual information criterion. Furthermore, the result is considered as a binary image. Then, 19 features are extracted from the image and the results are presented in the multilayer perceptron neural network for the purpose of training and testing. Results: In order to classify N-VF, VT-SVT, N-SVT, VF-VT, VT-N-VF, N-SVTVF, VT-VF-SVT and VT-VF-SVT-N in the conducted experiments, the accuracy rates were determined at 99. 5%, 100%, 94. 98%, 100%, 100%, 100%, 99. 5%, 96. 5% and 95%, respectively. Conclusion: In this paper, a new approach was developed to classify the abnormal signals obtained from an ECG such as VT, VF, and SVT compared to a normal signal. Compared to Other related studies, our proposed system significantly performed better.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 125

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    15
  • شماره: 

    1
  • صفحات: 

    77-92
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    8
  • دانلود: 

    0
چکیده: 

Background: Cardiovascular Diseases (CVD) requires precise and efficient diagnostic tools. The manual analysis of Electrocardiograms (ECGs) is labor-intensive, necessitating the development of automated methods to enhance diagnostic accuracy and efficiency.Objective: This research aimed to develop an automated ECG classification using Continuous Wavelet Transform (CWT) and Deep Convolutional Neural Network (DCNN), and transform 1D ECG signals into 2D spectrograms using CWT and train a DCNN to accurately detect abnormalities associated with CVD. The DCNN is trained on datasets from PhysioNet and the MIT-BIH arrhythmia dataset. The integrated CWT and DCNN enable simultaneous classification of multiple ECG abnormalities alongside normal signals.Material and Methods: This analytical observational research employed CWT to generate spectrograms from 1D ECG signals, as input to a DCNN trained on diverse datasets. The model is evaluated using performance metrics, such as precision, specificity, recall, overall accuracy, and F1-score.Results: The proposed algorithm demonstrates remarkable performance metrics with a precision of 100% for normal signals, an average specificity of 100%, an average recall of 97.65%, an average overall accuracy of 98.67%, and an average F1-score of 98.81%. This model achieves an approximate average overall accuracy of 98.67%, highlighting its effectiveness in detecting CVD. Conclusion: The integration of CWT and DCNN in ECG classification improves accuracy and classification capabilities, addressing the challenges with manual analysis. This algorithm can reduce misdiagnoses in primary care and enhance efficiency in larger medical institutions. By contributing to automated diagnostic tools for cardiovascular disorders, it can significantly improve healthcare practices in the field of CVD detection.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 8

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    16
  • شماره: 

    3
  • صفحات: 

    41-46
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    67
  • دانلود: 

    0
چکیده: 

An Electrocardiogram (ECG) is a test that is done with the objective of monitoring the heart’, s rhythm and electrical activity. It is conducted by attaching a specific type of sensor to the subject’, s skin to detect the signals generated by the heartbeats. These signals can reveal significant information about the wellness of the subjects’,heart state, and cardiologists use them to detect abnormalities. Due to the prevalence of heart diseases amongst individuals around the globe, there is an urgent need to design computer-aided approaches to automatically analyze ECG signals. Recently, computer vision-based techniques have demonstrated remarkable performance in medical image analysis in a variety of applications and use cases. This paper proposes an approach based on Convolutional Autoencoders (CAEs) and Transfer Learning (TL). Our approach is an ensemble way of learning, the most useful features from both the signal itself, which is the input of the CAE, and the spectrogram version of the same signal, which is fed to a convolutional feature extractor named MobileNetV1. Based on the experiments conducted on a dataset collected from 3 well-known hospitals in Baghdad, Iraq, the proposed method claims good performance in classifying four types of problems in the ECG signals. Achieving an accuracy of 97. 3% proves that our approach can be remarkably fruitful in situations where access to expert human resources is scarce.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 67

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

نشریه: 

NEUROCOMPUTING

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    454
  • شماره: 

    -
  • صفحات: 

    339-349
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    22
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 22

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1395
  • دوره: 

    4
  • شماره: 

    1
  • صفحات: 

    55-65
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    981
  • دانلود: 

    0
چکیده: 

متن کامل این مقاله به زبان انگلیسی می باشد، لطفا برای مشاهده متن کامل مقاله به بخش انگلیسی مراجعه فرمایید.لطفا برای مشاهده متن کامل این مقاله اینجا را کلیک کنید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 981

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

LU H.L. | ONG K. | CHIA P.

اطلاعات دوره: 
  • سال: 

    2000
  • دوره: 

    27
  • شماره: 

    -
  • صفحات: 

    387-390
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    149
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 149

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

PRASAD G.K. | SAHAMBI J.S.

اطلاعات دوره: 
  • سال: 

    2003
  • دوره: 

    1
  • شماره: 

    -
  • صفحات: 

    227-231
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    131
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 131

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1388
  • دوره: 

    3
  • شماره: 

    3 (10)
  • صفحات: 

    31-37
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    896
  • دانلود: 

    350
چکیده: 

هدف از این مقاله طراحی یک ابزار تشخیص ECG هوشمند است که از پیچیدگی محاسباتی بسیار پایین برخوردار باشد. برای این منظور یک سیستم طبقه بندی کننده الکتروکاردیوگرام بر اساس تبدیل موجک گسسته و شبکه های عصبی احتمالی ارایه شده است. در این مقاله یک ایده نوین ارایه می گردد که علاوه بر استفاده از خصوصیات آماری سیگنال و استفاده از روش های ریخت شناسی، از انجام تحلیل موجک روی هیستوگرام سیگنال (روش تخمین چگالی) نیز بهره می برد که سبب افزایش درصد بازشناسی درست می شود. در ابتدا سیگنال های ضربان قلب و تخمین چگالی ناشی از این سیگنال ها را با استفاده از تبدیل موجک گسسته به زیر گروه های مختلف تجزیه می کنیم. با استفاده از خصوصیات آماری استخراج شده از این زیرگروه ها و شکل اصلی الکتروکاردیوگرام، یک بردار مشخصه برای هر الکتروکاردیوگرام ایجاد می کنیم. سپس بر اساس خصوصیات متمایزکننده در بردارهای مشخصه، سیگنال های قلبی را با یک شبکه عصبی احتمالی رده بندی می کنیم. نتایج آزمایشی بر روی 5 گروه از سیگنال های الکتروکاردیوگرام از پایگاه داده ها در MIT-BIH arrhythmia کارایی بسیار بالا از روش غیرتهاجمی پیشنهاد شده را اثبات می کند که در مقایسه با شبکه های عصبی چندلایه متداول، آموزش سریع تر و احتمال صحت بالاتر و حجم محاسبات بسیار پایین تر را دارا می باشد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 896

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 350 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 7
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    203
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    20
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 20

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button